 SQL IMP SYNTAXES:--

 SQL LANGUAGE IS FURTHER DIVIDED INTO THE FOLLOWING

1. DDL - DATA DEFINITION LANGUAGE

2. DML - DATA MANIPULATION LANGUAGE

3. TCL - TRANSACTION CONTROL LANGUAGE

4. DCL - DATA CONTROL LANGUAGE

5. DQL - DATA QUERY LANGUAGE

DDL

1. CREATE

2. DROP

3. ALTER

4. RENAME

5. TRUNCATE

DML

1. INSERT

2. UPDATE

3. DELETE

TCL

1. COMMIT

2. ROLLBACK

3. SAVEPOINT

DCL

1. GRANT

2. REVOKE

DQL

 SCHEMA:

 IT IS COLLECTIONS OF COMPONENTS AND DATABASE OBJECTS UNDER THE CONTROL OF GIVEN DATABASE USER.

 1. DATABASE OBJECTS:-

 VIEWS :-

WHAT IS A VIEW ?

A VIEW IS A DATABASE OBJECT THAT WILL KEEP A SQL QUERY.THE QUERY CAN BE ANY TYPE OF QUERY LIKE A JOIN QUERY OR A SUBQUERY OR ANY OTHER QUERY.

 WHAT IS THE USE OF A VIEW?

CREATING A VIEW HAS THE FOLLOWING ADVANTAGES OR USES.

 1. A VIEW CAN BE USED TO RESTRICT ACCESS TO A DATABASE

 TABLE.IN OTHER WORDS WE CAN SAY THAT USING A VIEW A PROGRAMMER

 CAN ALLOW OTHER USERS OR PROGRAMMERS TO ACCESS ONLY

CERTAIN PORTION OF A DATABASE TABLE.

BY CREATING A VIEW WE CAN RESTRICT THE DATA RETURNED BY THE VIEW AS PER THE QUERY WHICH WE HAVE WRITTEN.

2. A VIEW CAN BE USED TO STORE A VERY COMPLEX QUERY ON THE DATABASE SERVER

 SO THAT OTHER USERS CAN USE THAT QUERY WITHOUT TYPING THE QUERY LOGIC ONCE AGAIN.

SYNTAX TO CREATE A VIEW

CREATE VIEW <VIEW NAME> AS <SELECT QUERY>;

CAN WE PERFORM DML OPERATIONS ON A VIEW.

PERFORMING DML OPERATIONS ON A VIEW IS POSSIBLE IN ORACLE DATABASE BUT IN A RESTRICTED MANNER. THE FOLLOWING ARE THE RESTRICTIONS FOR PERFORMING DML OPERATIONS ON A VIEW

1. WE CANNOT INSERT OR UPDATE THOSE COLUMNS WHICH HAVE BEEN SELECTED IN THE VIEW QUERY.

2. WE CANNNOT USE THOSE COLUMNS THAT HAVE NOT BEEN SELECTED IN OUR DELETE STATEMENTS.

3. WE CANNOT INSERT A RECORD INTO A TABLE THROUGH A VIEW IF ANY NOT NULL COLUMN HAS BEEN
 MISSED IN THE VIEW.

WE CANNOT PERFORM ANY DML OPERATION ON THOSE VIEWS THAT ARE BASED ON JOIN QUERIES

 WHAT IS A FORCED VIEW?

A FORCED VIEW IS A VIEW THAT IS CREATED ON A TABLE WHICH IS AS YET NOT EXISTING IN THE

 DATABASE.

SYNTAX:-

CREATE OR REPLACE FORCE VIEW <VIEW NAME> AS <SELECT QUERY>;

 SYNONYM :-

A SYNONYM IS A DATABASE OBJECT WHICH ACTS AS AN ALIAS NAME FOR ANOTHER DATABASE OBJECT.

 SYNTAX:-

 CREATE SYNONYM <SYNONYM NAME> FOR <OBJECT NAME>;

 A SYNONYM WILL NOT KEEP ANY DATA. IT WILL ONLY KEEP THE ALIAS NAME OF THE OBJECT TO WHICH IT IS ASSOCIATED.

 WHAT IS THE USE OF A SYNONYM?

 A SYNONYM MAY BE USED FOR THE FOLLOWING REASONS

 1. TO GIVE A SHORT NAME TO A DATABASE OBJECT WHICH HAS A LONG NAME.

 2. TO HIDE THE NAME OF THAT DATABASE OBJECT FROM OTHER USERS FOR SECURITY PURPOSE

 3. TO ACCESS AN OBJECT FASTER IN ANOTHER SCHEMA.

 CREATE SYNONYM E FOR EMP;

 HOW TO RENAME A TABLE?

 RENAME <OLD TABLE NAME> TO <NEW TABLE NAME>;

INDEX:

 Indexes will make data access faster.

 This index tells where a certain row in the table is stored.

It is more like an index in the book.

When we create an index on a column it is stored separately in the database.

 A query on any table initially searches for an Index on that table.

SYNTAX:

SQL> CREATE INDEX EMP_IDX ON EMP(EMPNO);

CLUSTER

CREATE CLUSTER DEPTNO_CLUSTER (DEPTNO NUMBER(2));

CREATE INDEX CLUSTER_INDEX ON CLUSTER DEPTNO_CLUSTER;

CREATE TABLE DEPT (DEPTNO NUMBER(2) CONSTRAINT

PK_DEPTNO PRIMARY KEY,DNAME VARCHAR2(10),

LOC VARCHAR2(10)) CLUSTER DEPTNO_CLUSTER(DEPTNO);

CREATE TABLE EMP (EMPNO NUMBER(4),

ENAME VARCHAR2(10),

JOB VARCHAR2(10),

HIREDATE DATE,

DEPTNO NUMBER(2) CONSTRAINT FK_DEPTNO REFERENCES DEPT(DEPTNO)) CLUSTER DEPTNO_CLUSTER(DEPTNO);

DROP CLUSTER DEPTNO_CLUSTER;

DROP CLUSTER DEPTNO_CLUSTER INCLUDING TABLES;

 2. FUNCTIONS:-

 NUMBER FUNCTIONS:-

 a) POWER

 SELECT POWER(10,2) FROM DUAL;

 b) MOD

SELECT MOD(10,2) FROM DUAL;

c) SQRT

SELECT SQRT(16) FROM DUAL;

d) SIGN

SELECT SIGN(100) FROM DUAL;

1

SELECT SIGN(-35) FROM DUAL;

-1

 SELECT SIGN(0) FROM DUAL;

0

e) CEIL

SMALLEST INT GREATER THAN OR EQUAL TO THE GIVEN VALUE

IT WILL SHOW THE CLOSEST INTEGER VALUE

SELECT CEIL(10.2) FROM DUAL;

11

SELECT CEIL(-10.2) FROM DUAL;

-10

 SELECT CEIL(10) FROM DUAL;

10

f) FLOOR

SMALLEST INT LESS THAN OR EQUAL TO THE GIVEN VALUE

SELECT FLOOR(10.2) FROM DUAL;

10

SELECT FLOOR(-10.2) FROM DUAL;

-11

SELECT FLOOR(10) FROM DUAL;

10

g) ROUND

ROUNDS THE GIVEN DECIMAL VALUE TO THE SPECIFIED VALUE

SELECT ROUND(10.24) FROM DUAL;

SELECT ROUND(10.56) FROM DUAL;

SELECT ROUND(10.50) FROM DUAL;

UPTO .5 IT WILL ROUND TO LOWER LIMIT FROM .5 ONWARDS IT ROUNDS TO UPPER LIMIT

h) TRUNC

TRUNCATES THE GIVEN DECIMAL VALUE

SELECT TRUNC(10.56) FROM DUAL;

SELECT TRUNC(10.56,1) FROM DUAL;

 DATE FUNCTIONS:-

 a) SYSDATE

IT WILL RETURN THE CURRENT DATE AND TIME

SELECT SYSDATE FROM DUAL;

 b) MONTHS_BETWEEN

SELECT MONTHS_BETWEEN(SYSDATE,HIREDATE) FROM EMP;

SELECT ROUND(MONTHS_BETWEEN(SYSDATE,HIREDATE)/12) FROM EMP

SELECT MONTHS_BETWEEN(SYSDATE,'01-JAN-2003') FROM EMP;

SELECT ROUND(MONTHS_BETWEEN(SYSDATE,'01-JAN-2003')) FROM DUAL;

 c) ADD_MONTHS

SELECT ADD_MONTHS(SYSDATE,2) FROM DUAL;

SELECT ADD_MONTHS('31-DEC-2003',1) FROM DUAL;

 d) NEXT_DAY

SELECT NEXT_DAY(SYSDATE,'FRIDAY') FROM DUAL;

SELECT NEXT_DAY('01-APR-2003','FRIDAY') FROM DUAL;

 CONVERSION FUNCTIONS:-

 a) TO_CHAR:- THIS FUNCTION WILL CONVERT THE GIVEN DATE TO CHARACTER

SELECT TO_CHAR(SYSDATE,'DD:MM:YY AD') FROM DUAL;

SELECT TO_CHAR(HIREDATE,'DD:MM:YY AD') FROM EMP;

SELECT TO_CHAR(HIREDATE,'DDSPTH MM YYYY') FROM EMP;

SELECT TO_CHAR(HIREDATE,'DDSPTH FMMONTH YYYY') FROM EMP;

SELECT TO_CHAR(HIREDATE,'DDSPTH FMMONTH YEAR') FROM EMP;

SELECT TO_CHAR(HIREDATE,'DDSPTH FMMONTH YEAR BC') FROM EMP;

SELECT TO_CHAR(HIREDATE,'DAY') FROM EMP;

SELECT TO_CHAR(SYSDATE,'DAY') FROM DUAL;

SELECT TO_CHAR(SYSDATE,'HH:MI:SS AM') FROM DUAL;

 b) TO_DATE

INSERT INTO EMP (EMPNO,ENAME,HIREDATE,DEPTNO) VALUES

(1001,'ALLEN',

TO_DATE('31-DEC-2002 09:30:00 AM','DD-MON-YYYY HH:MI:SS AM'),10);

INSERT INTO EMP (EMPNO,ENAME,HIREDATE,DEPTNO) VALUES

(1001,'ALLEN',SYSDATE,10);

 CHARACTER FUNCTIONS:-

 a) UPPER :- IT WILL CONVER THE GIVEN STRING TO UPPER CASE.

SELECT UPPER('hello how are you?') from dual;

SELECT UPPER(ENAME) FROM EMP;

 b) LOWER:- IT WILL CONVER THE GIVEN STRING TO LOWER CASE.

SELECT LOWER(ENAME) FROM EMP;

 c) INITCAP :- CONVERTS THE FIRST CHARACTER OF ALL WORDS IN A STRING TO UPPER CASE

SELECT INITCAP('HELLO HOW ARE YOU?') FROM DUAL;

SELECT INITCAP(ENAME) FROM EMP;

 d) LENGTH :- RETURNS THE NO OF CHARACTERS WITHIN A STRING INCLUDING SPACES

SELECT LENGTH ('HI THERE') FROM DUAL;

 e) LTRIM :- IT WILL TRIM OR REMOVE THE BLANK SPACES FROM THE LEFT HAND SIDE OF A STRING

SELECT LTRIM(' HELLO HOW ARE YOU?') FROM DUAL;

SELECT LENGTH(LTRIM(' HELLO HOW ARE YOU?')) FROM DUAL;

 f) RTIM :- IT WILL TRIM OR REMOVE THE BLANK SPACES FROM THE RIGHT HAND SIDE OF A STRING

SELECT RTRIM('HELLO HOW ARE YOU? ') FROM DUAL;

SELECT LENGTH(LTRIM('HELLO HOW ARE YOU?')) FROM DUAL;

 g) TRIM :- IT WILL REMOVE THE BLANK SPACES FROM BOTH SIDES OF THE STRING.

SELECT LENGTH(TRIM(' HELLO HOW ARE YOU?')) FROM DUAL;

SELECT TRIM(' HELLO HOW ARE YOU?') FROM DUAL;

 h) LPAD :- IT WILL PAD BLANK SPACES OR A SPECIFIED CHARACTER TO THE LEFT SIDE OF THE STRING.

SELECT LPAD(ENAME,10,'*') FROM EMP;

SELECT ENAME||LPAD(SAL,15,'*') FROM EMP;

 i) RPAD :- IT WILL PAD BLANK SPACES OR A SPECIFIED CHARACTER TO THE RIGHT SIDE OF THE STRING.

SELECT RPAD(ENAME,10,'*') FROM EMP;

SELECT RPAD(ENAME,10,'*')||SAL FROM EMP;

 j) CONCAT :- THIS FUNCTION IS USED TO JOIN TWO COLUMNS OUTPUTS

SELECT CONCAT(ENAME,SAL) FROM EMP;

|| :- CONCATENATION OPERATOR IS USED TO JOIN MORE THAN 2 COLUMNS

SELECT ENAME||JOB||SAL FROM EMP;

 k) ASCII :- RETURNS THE ASCII VALUE OF THE GIVEN CHARACTER

SELECT ASCII('S') FROM DUAL;

 l) CHR :- RETURNS THE CHARACTER OR SYMBOL CORRESPONDING TO THE GIVEN ASCII VALUE

SELECT CHR(83) FROM DUAL;

 m) SUBSTR :- THIS FUNCTION IS USED TO EXTRACT A SPECIFIED SET OF CHARACTERS FROM A SPECIFIED STRING

SELECT SUBSTR('HELLO HOW ARE YOU',1,5) FROM DUAL;

SELECT SUBSTR('HELLO HOW ARE YOU',6,5) FROM DUAL;

SELECT SUBSTR('HELLO HOW ARE YOU',-3,3) FROM DUAL;

SQL> SELECT SUBSTR('HELLO HOW ARE YOU',1,5) FROM DUAL;

SUBST

HELLO

SQL> SELECT SUBSTR('HELLO HOW ARE YOU',6,5) FROM DUAL;

SUBST

 HOW

SQL> SELECT SUBSTR('HELLO HOW ARE YOU',-16,4) FROM DUAL;

SUBS

ELLO

SQL> SELECT SUBSTR('HELLO HOW ARE YOU',-3,3) FROM DUAL;

SUB

YOU

 n) INSTR :- SEARCHES FOR A GIVEN STRING WITHIN ANOTHER STRING AND RETURNS THE POSITION OF THE CHARACTERS WITHIN THE SEARCH STRING.

SELECT INSTR('HELLO HOW ARE YOU?','L',1) FROM DUAL;

 SQL> SELECT INSTR('HELLO HOW ARE YOU?','L',1) FROM DUAL;

INSTR('HELLOHOWAREYOU?','L',1)

 3

SELECT INSTR('HELLO HOW ARE YOU?','L',1,2) FROM DUAL;

SQL> SELECT INSTR('HELLO HOW ARE YOU?','L',1,2) FROM DUAL;

INSTR('HELLOHOWAREYOU?','L',1,2)

 4

 DECODE:-

SELECT DECODE(1,1,2,3) FROM DUAL;

SELECT DECODE(1,2,1,3) FROM DUAL;

SELECT PRD_ID, AVAILABLE,

DECODE(AVAILABLE,'Y','PRODUCT IS AVAILABLE',

'PRODUCT IS NOT AVAILABLE') FROM MORE_PRODUCTS;

SELECT PRODUCT_ID,PRODUCT_TYPE_ID, DECODE(PRODUCT_TYPE_ID,

1,'BOOK',

2,'VIDEO',

3,'DVD',

4,'CD','MAGAZINE') FROM PRODUCTS;

SELECT EMPNO,ENAME,DECODE(JOB,

'CLERK','WORKER',

'SALESMAN','SALESPERSON',

'ANALYST','PROGRAMMER',

'MANAGER','SUPERVISOR',

'PRESIDENT','CEO','N/A') JOB FROM EMP;

SELECT DECODE(JOB,'CLERK','WORKER',JOB) FROM EMP;

CASE:-

SELECT PRODUCT_ID,PRODUCT_TYPE_ID,

CASE PRODUCT_TYPE_ID

WHEN 1 THEN 'BOOK'

WHEN 2 THEN 'VIDEO'

WHEN 3 THEN 'DVD'

WHEN 4 THEN 'CD'

ELSE 'MAGAZINE'

END

FROM PRODUCTS;

SEARCHED CASE:-

SELECT PRODUCT_ID,PRODUCT_TYPE_ID,

CASE

WHEN PRODUCT_TYPE_ID=1 THEN 'BOOK'

WHEN PRODUCT_TYPE_ID=2 THEN 'VIDEO'

WHEN PRODUCT_TYPE_ID=3 THEN 'DVD'

WHEN PRODUCT_TYPE_ID=4 THEN 'CD'

ELSE 'MAGAZINE'

END

FROM PRODUCTS;

SELECT PRODUCT_ID,PRICE,

CASE

WHEN PRICE>15 THEN 'EXPENSIVE'

ELSE 'CHEAP'

END

FROM PRODUCTS;

ROLL UP:-

 THE ROLL UP CLAUSE EXTENDS THE GROUP BY TO RETURN A ROW CONTAINING A SUBTOTAL FOR EACH GROUP ALONG WITH A TOTAL FOR ALL GROUPS.

SELECT DIVISION_ID,SUM(SALARY) FROM EMPLOYEES2

GROUP BY ROLLUP(DIVISION_ID);

 CUBE:-

THE CUBE CLAUSE EXTENDS GROUP BY CLAUSE TO RETURN ROWS CONTAINING A SUBTOTAL FOR ALL COMBINATIONS OF COLUMNS INCLUDED IN THE CUBE CLAUSE ALONG WITH A TOTAL AT THE END.

SELECT DEPTNO,JOB,SUM(SAL) FROM EMP

GROUP BY CUBE(DEPTNO,JOB);

SELECT DEPTNO,JOB,SUM(SAL) FROM EMP

GROUP BY CUBE(JOB,DEPTNO)

 REPLACE FUNCTION:-

 THE REPLACE FUNCTOIN WILL SEARCH FOR THE SPECIFIED STRING WITHIN A COL AND REPLACE THAT STRING WITH THE GIVEN STRING. AT A TIME WE CAN REPLACE ONLY 1 VALUE WITHIN A COL.

SELECT EMPNO,ENAME,REPLACE (JOB,'SALESMAN','SALESPERSON') FROM EMP;

 TRANSLATE:-

SELECT TRANSLATE('HAL','ABCDEFGHIJKLMNOPQRSTUVWXYZ','BCDEFGHIJKLMNOPQRSTUVWXYZA')

FROM DUAL;

 GROUP FUNCTIONS:-

 GROUPS FUNCTIONS WILL PROCCESS A SET OF RECORDS AT TIME.

A GROUP FUNCTION WILL ACCEPT MULTIPLE VALUES OF A COLUMN AND PROCCESS THE SAME AND RETURN A SINGLE VALUE.

 THE FOLLOWING ARE THE GROUP FUNCTIONS SUPPORTED BY ORACLE SQL.

1. SUM(<COL NAME>)

2. MIN(<COL NAME>)

3. MAX(<COL NAME>)

4. AVG(<COL NAME>)

5. COUNT(*) | (<COL NAME>)

NOTE:--

THE COUNT FUNCTION WILL IGNORE NULL VALUES WHEN IT IS USED AT THE COLUMN LEVEL

THE COUNT FUNCTION WILL NOT IGNORE NULL VALUES WHEN IT IS USED AT THE TABLE LEVEL.

GROUP BY CLAUSE:-

IT IS A CLAUSE USED WITH THE SELECT COMMAND.THE GROUP BY CLAUSE IS USED TO DISPLAY INDIVIDUAL COLUMN OUTPUT ALONG WITH GROUP FUNCTION OUTPUT.

THE GROUP BY CLAUSE MUST BE ON THE BASIS OF A SINGLE COLUMN OR MORE COLUMNS.

SYNTAX:-

GROUP BY <COL NAME>;

GROUP BY JOB

THE GROUP BY CLAUSE WILL APPEAR AFTER THE WHERE CLAUSE

SELECT <COL LIST> FROM <TABLE NAME>

[WHERE <CONDITION>]

GROUP BY <COL LIST>;

 HAVING CLAUSE:-

THE HAVING CLAUSE IS USED TO SPECIFY A CONDITION WITH THE GROUP FUNCTION. IT IS SIMILAR TO THE WHERE CLAUSE BUT IT CAN KEEP A GROUP FUNCTION. THE HAVING CLAUSE WILL APPEAR ONLY AFTER THE GROUP BY CLAUSE.

SYNTAX:-

SELECT <COL LIST> FROM <TABLE NAME>

[WHERE <CONDITION>]

 GROUP BY <COL NAME>

 HAVING <CONDITION>;

--

 3. SUBQUERIES:--

 A SUB-QUERY WILL CONSIST OF TWO QUERIES,

 WHERE ONE QUERY WILL CALL THE OTHER QUERY.

THE QUERY THAT CALLS THE OTHER QUERY IS KNOWN AS THE PARENT QUERY OR ROOT QUERY.

THE QUERY THAT IS BEING CALLED BY THE PARENT QUERY OR ROOT QUERY IS KNOWN AS THE SUB QUERY OR CHILD QUERY OR NESTED QUERY.

ORACLE SUPPORTS TWO TYPES OF SUB QUERIES

1. INDEPENDENT SUB QUERY

2. CORRELATED SUB QUERY

INDEPENDENT SUB-QUERY:-

IN AN INDEPENDENT SUB-QUERY THE SUB-QUERY OR CHILD -

QUERY WILL BE EXECUTED FIRST AND WILL RETURN ONE OR MORE RECORDS TO THE PARENT QUERY OR ROOT QUERY.

BASED ON THE RECORDS RETURNED BY THE SUB QUERY THE PARENT QUERY WILL BE EXECUTED AND WILL RETURN THE OUTPUT.

THE SUB QUERY IS TOTALLY INDEPENDENT OF THE PARENT QUERY,

IT WILL EXECUTE BY ITSELF WITHOUT REQUIRING ANY VALUES FROM THE PARENT QUERY.

THE PARENT QUERY ON THE OTHER HAND IS DEPENDENT ON THE SUB QUERY.

 SYNTAX:-

 <PARENT QUERY> <RELATIONAL OP> (<CHILD QUERY>)

 |-SELECT
 |-BASIC
 |-SELECT

 |-DELETE
 |-ADVANCED

 |-UPDATE

CORRELATED SUB-QUERY

A CORRELATED SUB-QUERY IS USED ON THOSE TABLES THAT KEEP A PARENT CHILD RELATION WITHIN THE TABLE ITSELF,

 LIKE EMPNO AND MGR IN EMP TABLE.

IN A CORRELATED SUBQUERY BOTH THE QUERIES ARE DEPENDENT ON EACH OTHER

 i.e. PARENT QUERY IS DEPENDENT ON THE CHILD QUERY FOR DATA AND VICE-VERSA.

IN A CORRELATED SUBQUERY WE MUST USE TABLE ALIAS NAMES BECAUSE OUTER QUERY DATA MUST BE READ WITHIN THE SUB-QUERY.

SELECT E.ENAME,E.SAL FROM EMP E;

IN A CORRELATED SUBQUERY

 THE PARENT QUERY IS EXECUTED FIRST

BUT IN A PARTIAL MANNER. WHEN THE PARENT EXECUTES

THE FROM CLAUSE WILL FIRST EXECUTE AND RETURN A SET OF

RECORDS FROM THE TABLE AFTER EXECUTION OF THE FROM CLAUSE THE

 WHERE CLAUSE HAS TO BE CHECKED. TO CHECK THE WHERE CLAUSE CONDITION THE

 PARENT QUERY WILL REQUIRE SOME VALUES FROM THE SUBQUERY, THUS AT THAT POINT THE SUBQUERY EXECUTION WILL BEGIN.

IN A CORRELATED SUB-QUERY THE SUB QUERY IS

 EXECUTED THOSE MANY TIMES AS THE NUMBER OF RECORDS PICKED UP BY THE FROM CLAUSE OF THE PARENT QUERY.

SELECT E.EMPNO,E.ENAME,E.MGR,E.SAL FROM EMP E

WHERE E.SAL>(SELECT M.SAL FROM EMP M

 WHERE M.EMPNO=E.MGR);

 4.SET OPERATORS:-

1. UNION

2. UNION ALL

3. INTERSECT

4. MINUS

 UNION :- IT GIVES UNIQUE VALUES OF TWO QUERIES OUTPUT

QUERY1 UNION QUERY2

1

2

2

3

3

5

1235

 INTERSECT :- IT GIVES UNIQUE VALUES BUT THOSE MUST BE PRESENT IN BOTH THE QUERIES OUTPUT.

QUERY1 INTERSECT QUERY2

1

 1

1

 2

1

 5

2

3

1, 2

MINUS :-

IT RETURNS THE VALUE WHICH IS PRESENT IN THE FIRST OUTPUT AND NOT AVAILABLE IN THE SECOND OUTPUT.

SELECT DEPTNO FROM DEPT MINUS SELECT DEPTNO FROM EMP;

SELECT EMPNO FROM EMP MINUS SELECT MGR FROM EMP;

UNION ALL :- THE COMBINED OUTPUT OF BOTH QUERIES IS GIVEN AS THE FINAL OUTPUT

SELECT DEPTNO FROM EMP

UNION ALL

SELECT DEPTNO FROM DEPT;

TREE WALKING :- START WITH AND CONNECT BY PRIOR

TREE WALKING

TREE WALKING IS USED TO DISPLAY DATA WITHIN THOSE TABLES THAT KEEP A PARENT CHILD RELATION WITHIN THE TABLE ITSELF.USING THE TREE WALK WE DISPLAY A TREE

VIEW STRUCTURE OF THE PARENT RECORDS AND RELATED CHILD RECORDS.

EXAMPLE DISPLAY MANAGER DETAILS ALONG WITH CORRESPONDING EMPLOYEE DETAILS.

TO PERFORM THE TREE WALK WE REQUIRE TO USE THE

"START WITH" AND "CONNECT BY PRIOR" CLAUSES ALONG WITH THE ORDER BY CLAUSE.

SYNTAX

START WITH <FILTER CONDITION>

CONNECT BY PRIOR <RELATION CONDITION>

|

 EMPNO=MGR

a) SELECT ENAME FROM EMP

 START WITH MGR IS NULL

 CONNECT BY PRIOR EMPNO=MGR;

 B) SELECT LPAD(ENAME,LENGTH(ENAME)+LEVEL*3) ENAME,LEVEL

FROM EMP

START WITH MGR IS NULL

CONNECT BY PRIOR EMPNO=MGR;

--

 5. JOINS:--

 JOIN QUERIES ARE USED TO RETRIEVE DATA FROM TWO OR MORE TABLES AND DISPLAY THAT DATA IN A SINGLE OUTPUT.

1. EQUI-JOIN

2. OUTER JOIN

3. SELF JOIN

4. NON-EQUI JOIN

5. CARTESIAN JOIN

6. CROSS JOIN

7. NATURAL JOIN

8. NATURAL JOIN WITH USING CLAUSE

9. ON JOIN

10. LEFT OUTER JOIN

11. RIGHT OUTER JOIN

12. FULL OUTER JOIN

 EQUI JOIN:- THIS TYPE OF JOIN IS USED ON THOSE TABLES THAT KEEP COMMON COLUMNS CONTAINING SOME COMMON DATA.

DISPLAY EMP DETAILS ALONG WITH CORRESPONDING DEPT DETAILS.

SELECT EMPNO,ENAME,JOB,EMP.DEPTNO,DNAME,LOC

FROM EMP,DEPT

WHERE EMP.DEPTNO=DEPT.DEPTNO;

 OUTER JOIN:- THE OUTER JOIN IS SIMILAR TO THE EQUI JOIN BUT IT WILL GET THAT EXTRA DATA THAT IS AVAILABLE IN ONLY ONE OF THE TWO TABLES. THIS EXTRA DATA IS DISPLAYED ALONG WITH ALL OTHER DATA FROM BOTH TABLES.

DISPLAY EMP DETAILS ALONG WITH CORRESPONDING DEPT DETAILS AND ALSO DISPLAY THAT DEPT'S DETAILS IN WHICH THERE ARE NO EMPLOYEES.

TO GET THIS EXTRA INFORMATION ORACLE USES THE OUTER JOIN OPERATOR THAT IS (+).

THIS OPERATOR MUST BE PLACED WITHIN THE JOIN CONDITION ON THAT TABLES SIDE THAT IS DEFFICIENT OF THE DATA.

SELECT EMPNO,ENAME,JOB,DEPT.DEPTNO,DNAME,LOC

FROM EMP , DEPT

WHERE EMP.DEPTNO(+)=DEPT.DEPTNO;

SELF JOIN:-

THE SELF JOIN IS USED ON THOSE TABLES THAT KEEP A PARENT CHILD RELATION WITHIN THE TABLE ITSELF.

DISPLAY EMP DETAILS ALONG WITH MANAGERS NAME AND EMPNO.

SELECT E.EMPNO,E.ENAME,M.EMPNO,M.ENAME

FROM EMP E , EMP M

WHERE M.EMPNO=E.MGR;

NON-EQUI JOIN

IT IS USED ON THOSE TABLES THAT DO NOT KEEP ANY COMMON COLUMNS. THE NON EQUI JOIN IS BASED ON VALUE RANGE COMPARISONS.

DISPLAY ALL EMP DETAILS ALONG WITH SALGRADE DETAILS.

SELECT EMPNO,ENAME,SAL,GRADE

FROM EMP ,SALGRADE

WHERE SAL BETWEEN LOSAL AND HISAL;

 LEFT OUTER JOIN

SELECT E.EMPNO,E.ENAME,D.DEPTNO,D.DNAME,D.LOC

FROM DEPT D LEFT OUTER JOIN EMP E

ON(E.DEPTNO=D.DEPTNO);

RIGHT OUTER JOIN

SELECT E.EMPNO,E.ENAME,D.DEPTNO,D.DNAME,D.LOC

FROM DEPT D RIGHT OUTER JOIN EMP E

ON(E.DEPTNO=D.DEPTNO);

 6. ALTER COMMAND:-

 THE ALTER TABLE COMMAND IS USED TO MODIFY THE STRUCTURE OF THE TABLE. USING THE ALTER TABLE COMMAND WE CAN PERFORM THE FOLLOWING TASKS

1. ADD A COL TO THE TABLE

2. REMOVE A COL FROM THE TABLE

3. ADD A CONSTRAINT TO THE COL

4. REMOVE A CONSTRAINT FROM A COL

5. DISABLE A CONSTRAINT ON A COL

6. ENABLE A CONSTRAINT ON A COL

7. INCREASE OR DECREASE THE SIZE OF A COL

8. CHANGE THE DATATYPE OF A COL

 ADDING A COL TO A TABLE

SYNTAX :-

ALTER TABLE <TABLE NAME> ADD (<COL NAME> <DATA TYPE> [<CONSTRAINT>],...);

ALTER TABLE EMP ADD (GENDER CHAR(1) CONSTRAINT CK_GENDER CHECK (GENDER IN('M','F')),ADDRESS VARCHAR2(20));

DROP A COL FROM A TABLE:-

SYNTAX

ALTER TABLE <TABLE NAME> DROP COLUMN <COL NAME>;

ALTER TABLE EMP DROP COLUMN GENDER;

ADDING CONSTRAINT TO A COL:-

NOT NULL:-

SYNTAX:-

ALTER TABLE <TABLE NAME> MODIFY <COL NAME> CONSTRAINT <CONSTRAINT NAME> NOT NULL;

ALTER TABLE EMP MODIFY EMPNO CONSTRAINT NN_EMPNO NOT NULL;

UNIQUE :-

SYNTAX:-

ALTER TABLE <TABLE NAME> ADD CONSTRAINT <CONSTRAINT NAME> UNIQUE (<COLNAME>)

ALTER TABLE EMP ADD CONSTRAINT UN_EMPNO UNIQUE(EMPNO);

CHECK :-

ALTER TABLE <TABLE NAME> ADD CONSTRAINT <CONSTRAINT NAME> CHECK(<CONDITION>)

ALTER TABLE EMP ADD CONSTRAINT CK_ENAME CHECK(ENAME=UPPER(ENAME));

PRIMARY KEY :-

ALTER TABLE <TABLE NAME> ADD CONSTRAINT <CONSTRAINT NAME> PRIMARY KEY(<COL NAME>);

ALTER TABLE DEPT ADD CONSTRAINT PK_DEPTNO PRIMARY KEY(DEPTNO);

FOREIGN KEY

ALTER TABLE <TABLE NAME> ADD CONSTRAINT <CONSTRAINT NAME> FOREIGN KEY (<COL NAME>) REFERENCES <TABLE NAME> (<PK COL NAME>);

ALTER TABLE EMP ADD CONSTRAINT FK_DEPTNO FOREIGN KEY (DEPTNO) REFERENCES

DEPT(DEPTNO);

REMOVING OR DROPPING A CONSTRAINT FROM A COL

ALTER TABLE <TABLE NAME> DROP CONSTRAINT <CONSTRAINT NAME>;

ALTER TABLE EMP DROP CONSTRAINT FK_DEPTNO;

ALTER TABLE DEPT DROP CONSTRAINT PK_DEPTNO;

ALTER TABLE EMP DROP CONSTRAINT NN_EMPNO;

DISABLE A CONSTRAINT ON COL

ALTER TABLE <TABLE NAME> DISABLE CONSTRAINT <CONSTRAINT NAME>;

ALTER TABLE EMP DISABLE CONSTRAINT UN_EMPNO;

WHEN A CONSTRAINT IS DISBABLED WE CAN ENTER DATA THAT IS NOT VALIDATING THE CONSTRAINT, BUT ONCE THAT DATA HAS BEEN ENTERED INTO THE TABLE WE CANNOT ENABLE THE CONSTRAINT UNLESS THE INVALID DATA IS REMOVED FROM THE TABLE.

ENABLE THE CONSTRAINT:-

SYNTAX

ALTER TABLE <TABLE NAME> ENABLE CONSTRAINT <CONSTRAINT NAME>;

ALTER TABLE EMP ENABLE CONSTRAINT UN_EMPNO;

WE CAN CHECK THE STATUS OF A CONSTRAINT BY WRITING THE FOLLOWING QUERY

SELECT CONSTRAINT_NAME,CONSTRAINT_TYPE,STATUS FROM USEr_CONSTRAINTS WHERE TABLE_NAME='EMP';

INCREASE OR DECREASE THE SIZE OF A COL:-

WE CAN INCREASE THE SIZE OF A COL AT ANY TIME WETHER DATA IS EXISTING IN THE COL OR NOT. BUT WE CANNOT DECREASE THE SIZE OF A COL IF THERE IS DATA IN THAT COL.

SYNTAX:-

ALTER TABLE <TABLE NAME> MODIFY <COL NAME> <DATA TYPE> (<NEW SIZE>)

ALTER TABLE EMP MODIFY EMPNO NUMBER(5);

ALTER TABLE EMP MODIFY EMPNO NUMBER(4);

ALTER TABLE EMP MODIFY ENAME VARCHAR2(15);

ALTER TABLE EMP MODIFY ENAME VARCHAR2(10);

CHANGING THE DATA TYPE OF A COLUMN:-

ALTER TABLE <TABLE NAME> MODIFY <COL NAME> <NEW DATATYPE>;

TO CHANGE THE DATATYPE OF A COLUMN THE COL MUST BE EMPTY , BUT IF WE ARE CHANGING THE DATATYPE FROM CHAR TO VARCHAR2 OR VARCHAR2 TO CHAR THEN THE COL NEED NOT BE EMPTY.THE SIZE OF THE DATATYPE MUST BE SAME OR LARGER THAN THE OLD SIZE IN CASE DATA IS ALREADY EXISING IN THE COL.

ALTER TABLE EMP MODIFY ENAME CHAR(15);

ALTER TABLE EMP MODIFY ENAME VARCHAR2(15);

ALTER TABLE EMP MODIFY EMPNO VARCHAR2(10);

ALTER SESSION SET SQL_TRACE=TRUE;

 7.CONSTRAINTS:-

 A CONSTRAINT CAN BE DEFINED AS A CHECK OR A RULE THAT IS APPLIED TO A TABLES COLUMN. THIS CHECK OR RULE WILL VALIDATE THE DATA THAT IS BEING ENTERED INTO THE TABLES COLUMN AND THERE BY MAINTAIN DATABASE DATA INTEGRITY.

THE FOLLOWING ARE THE TYPES OF CONSTRAINTS AVAILABLE IN ORACLE SQL.

1. NOT NULL CONSTRAINT

2. UNIQUE

3. CHECK CONSTRAINT

4. PRIMARY KEY CONSTRAINT

5. FOREIGN KEY CONSTRAINT

6. DEFAULT CONSTRAINT

NOT NULL :- WHEN A COLUMN IS DEFINED WITH THE NOT NULL CONSTRAINT THEN THAT COLUMN WILL NOT ALLOW OR ACCEPT ANY NULL VALUES.

NOTE:- THE NOT NULL CONSTRAINT CAN APPEAR ONLY AT COLUMN LEVEL.

A PRIMARY KEY CAN BE DEFINED AS A COLUMN WHICH WILL ALLOW ITS DATA TO BE REFERENCED IN ANOTHER TABLES OR SAME TABLES FOREIGN KEY COLUMN.

 TABLE LEVEL CONSTRAINTS

UNIQUE:-

CREATE TABLE EMP

(EMPNO NUMBER(4),

 ENAME VARCHAR2(10),

 JOB VARCHAR2(10),

 SAL NUMBER(7,2),

 DEPTNO NUMBER(2), CONSTRAINT UN_EMPNO UNIQUE(EMPNO));

CREATE TABLE EMP

(EMPNO NUMBER(4),

 ENAME VARCHAR2(10),

 JOB VARCHAR2(10),

 SAL NUMBER(7,2),

 DEPTNO NUMBER(2),

 CONSTRAINT UN_EMPNO_ENAME UNIQUE(EMPNO,ENAME));

CREATE TABLE EMP

(EMPNO NUMBER(4),

 ENAME VARCHAR2(10),

 JOB VARCHAR2(10),

 SAL NUMBER(7,2),

 DEPTNO NUMBER(2),

 CONSTRAINT UN_EMPNO_ENAME UNIQUE(EMPNO,ENAME),

 CONSTRAINT CK_ENAME CHECK (ENAME=UPPER(ENAME)));

CREATE TABLE EMP

(EMPNO NUMBER(4),

 ENAME VARCHAR2(10),

 JOB VARCHAR2(10),

 SAL NUMBER(7,2),

 COMM NUMBER(3),

 DEPTNO NUMBER(2),

 CONSTRAINT UN_EMPNO_ENAME UNIQUE(EMPNO,ENAME),

 CONSTRAINT CK_ENAME CHECK (ENAME=UPPER(ENAME)),

 CONSTRAINT CK_SAL_COMM CHECK (SAL>COMM));

PRIMARY KEY TABLE LEVEL:-

CREATE TABLE DEPT (

DEPTNO NUMBER(2),

DNAME VARCHAR2(10),

LOC VARCHAR2(10),

CONSTRAINT PK_DEPTNO PRIMARY KEY(DEPTNO));

CREATE TABLE DEPT

(DEPTNO NUMBER(2),

DNAME VARCHAR2(10),

LOC VARCHAR2(10),

CONSTRAINT PK_DEPTNO_DNAME PRIMARY KEY(DEPTNO,DNAME));

FOREIGN KEY TABLE LEVEL;-

CREATE TABLE EMP (

EMPNO NUMBER(4),

ENAME VARCHAR2(10),

JOB VARCHAR2(10),

DEPTNO NUMBER(2),

CONSTRAINT FK_DEPTNO FOREIGN KEY(DEPTNO) REFERENCES

DEPT(DEPTNO) ON DELETE CASCADE);

CREATE TABLE EMP (

EMPNO NUMBER(4),

 ENAME VARCHAR2(10),

JOB VARCHAR2(10),

DEPTNO NUMBER(2),

DNAME VARCHAR2(10),

CONSTRAINT FK_DEPTNO FOREIGN KEY(DEPTNO,DNAME) REFERENCES DEPT(DEPTNO,DNAME) ON DELETE CASCADE);

CREATE TABLE DEPT (DEPTNO NUMBER(2) CONSTRAINT PK_DEPTNO PRIMARY KEY,DNAME VARCHAR2(10) CONSTRAINT PK_DNAME PRIMARY KEY);

TABLE LEVEL CONSTRAINTS ARE DEFINED AFTER ALL THE COLUMN DEFINITIONS.

USING TABLE LEVEL CONSTRAINTS WE CAN DEFINE COMPOSITE UNIQUE ,PRIMARY AND FOREIGN KEYS.

USING TABLE LEVEL CONSTRAINTS WE CAN MAKE COMPARISON BETWEEN COLUMNS VALUES WITH CHECK CONSTRAINTS.

TABLE LEVEL CONSTRAINTS MAKE THE SYNTAX MORE SIMPLE TO READ SINCE ALL CONSTRAINT DEFINITIONS ARE KEPT SEPERATE FROM COLUMN DEFINITIONS.

NOT NULL CONSTRAINT CANNOT BE DEFINED AT TABLE LEVEL.
